Page 25 - scheppingen
P. 25

GENERAL INTRODUCTION & OUTLINE OF THE THESIS
propagate seizures in tuberous sclerosis. Brain. 2016 Oct;139(Pt 10):2653-67.
50. Okanishi T, Akiyama T, Tanaka S, et al. Interictal high frequency oscillations correlating with seizure outcome in patients with widespread epileptic networks in tuberous sclerosis complex. Epilepsia.
2014 Oct;55(10):1602-10.
51. Luat AF, Makki M, Chugani HT. Neuroimaging in tuberous sclerosis complex. Current opinion in
neurology. 2007 Apr;20(2):142-50.
52. Griffiths PD, Batty R, Warren D, et al. The use of MR imaging and spectroscopy of the brain in
children investigated for developmental delay: What is the most appropriate imaging strategy?
European radiology. 2011 Sep;21(9):1820-30.
53. Marcotte L, Aronica E, Baybis M, Crino PB. Cytoarchitectural alterations are widespread in cerebral
cortex in tuberous sclerosis complex. Acta neuropathologica. 2012 May;123(5):685-93.
54. Sosunov AA, McGovern RA, Mikell CB, et al. Epileptogenic but MRI-normal perituberal tissue in Tuberous Sclerosis Complex contains tuber-specific abnormalities. Acta Neuropathol Commun.
2015;3:17.
55. Caban C, Khan N, Hasbani DM, Crino PB. Genetics of tuberous sclerosis complex: implications for
clinical practice. Appl Clin Genet. 2017;10:1-8.
56. Bongaarts A, Giannikou K, Reinten RJ, et al. Subependymal giant cell astrocytomas in Tuberous
Sclerosis Complex have consistent TSC1/TSC2 biallelic inactivation, and no BRAF mutations.
Oncotarget. 2017 Nov 10;8(56):95516-29.
57. Muhlebner A, Iyer AM, van Scheppingen J, et al. Specific pattern of maturation and differentiation
in the formation of cortical tubers in tuberous sclerosis omplex (TSC): evidence from layer-spe-
cific marker expression. J Neurodev Disord. 2016;8:9.
58. Aronica E, Mühlebner A. Neuropathology of Epilepsy. In: Kovacs G, Alafuzoff I, editors. Handbook
of Clinical Neurology 3rd Series: Elsevier; 2017.
59. Crino PB, Trojanowski JQ, Dichter MA, Eberwine J. Embryonic neuronal markers in tuberous scle-
rosis: single-cell molecular pathology. Proceedings of the National Academy of Sciences of the
United States of America. 1996;93(24):14152-7.
60. Lee A, Maldonado M, Baybis M, et al. Markers of cellular proliferation are expressed in cortical
tubers. Annals of neurology. 2003 May;53(5):668-73.
61. Galanopoulou AS, Gorter JA, Cepeda C. Finding a better drug for epilepsy: the mTOR pathway as
an antiepileptogenic target. Epilepsia. 2012 Jul;53(7):1119-30.
62. Wong M. A critical review of mTOR inhibitors and epilepsy: from basic science to clinical trials.
Expert review of neurotherapeutics. 2013 Jun;13(6):657-69.
63. Liu J, Reeves C, Michalak Z, et al. Evidence for mTOR pathway activation in a spectrum of epilep-
sy-associated pathologies. Acta Neuropathol Commun. 2014 Jul 08;2:71.
64. Drion CM, Borm LE, Kooijman L, et al. Effects of rapamycin and curcumin treatment on the development of epilepsy after electrically induced status epilepticus in rats. Epilepsia. 2016
May;57(5):688-97.
65. van Vliet EA, Otte WM, Wadman WJ, et al. Blood-brain barrier leakage after status epilepticus in
rapamycin-treated rats I: Magnetic resonance imaging. Epilepsia. 2016 Jan;57(1):59-69.
66. Switon K, Kotulska K, Janusz-Kaminska A, Zmorzynska J, Jaworski J. Molecular neurobiology of
mTOR. Neuroscience. 2017 Jan 26;341:112-53.
67. Graber TE, McCamphill PK, Sossin WS. A recollection of mTOR signaling in learning and memory.
Learn Mem. 2013 Sep 16;20(10):518-30.
68. Hoeffer CA, Klann E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends
in neurosciences. 2010 Feb;33(2):67-75.
69. Takei N, Nawa H. mTOR signaling and its roles in normal and abnormal brain development. Front
Mol Neurosci. 2014;7:28.
70. Bockaert J, Marin P. mTOR in Brain Physiology and Pathologies. Physiol Rev. 2015 Oct;95(4):1157-87.
71. Osborne LR. Caveat mTOR: aberrant signaling disrupts corticogenesis. J Clin Invest. 2010
May;120(5):1392-5.
72. Crino PB. mTOR: A pathogenic signaling pathway in developmental brain malformations. Trends
Mol Med. 2011 Dec;17(12):734-42.
73. Garza-Lombo C, Gonsebatt ME. Mammalian Target of Rapamycin: Its Role in Early Neural
 Development and in Adult and Aged Brain Function. Front Cell Neurosci. 2016;10:157.
23
one












































   23   24   25   26   27